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Abstract
We present the derivation of an interatomic potential for the iron–phosphorus
system based primarily on ab initio data. Transferability in this system is
extremely problematic, and the potential is intended specifically to address
the problem of radiation damage and point defects in iron containing low
concentrations of phosphorus atoms. Some preliminary molecular dynamics
calculations show that P strongly affects point defect migration.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phosphorus is one of the major causes of embrittlement of nuclear reactor pressure vessel (RPV)
steels [1]. A huge enhancement of the concentration of phosphorus (P) atoms at grain
boundaries is observed in samples of RPV steels taken from nuclear reactors [2]. This leads to
a decrease in the grain boundary cohesion and consequently to a shift of the ductile-to-brittle
transition temperature.

A theoretical understanding of the problem requires a full understanding of the interaction
of millions of these two atoms at the atomic level. First-principles calculations provide the
most reliable way to describe interactions, but they are impractical for large scale molecular
dynamics. Hence there is a need for accurate descriptions of the energy based on interatomic
potentials which do not treat the electrons explicitly.

A crucial aspect of atomic level modelling is proper relaxation of atoms around the defect,
for which elegant methods were developed by Norgett [3]. With state-of-the-art ab initio
methods it is now possible to treat a few hundred movable atoms: just as with empirical
potentials in the seventies this brings problems of finite size effects to the fore and many of
the concepts pioneered by Norgett and encapsulated in his DEVIL [4] (defect evaluation in
lattices) code are being revisited today, and indeed many of the applications such as dislocation
core structure [5] and twin boundaries [6] are still debated.
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Here we present the derivation of an interatomic potential for Fe–P which can be evaluated
as quickly as a short ranged pairwise potential. For molecular dynamics purposes in studying
reactor steels, the interesting region is that of small concentrations (∼10−3) of P in Fe, in
particular, the behaviour of point defects in lattices. Traditionally, data for fitting potentials
came from experiment, typically bulk properties, but recently ab initio total energy calculation
enables us to add more specific atomistic level configurations to the fitting data set. Here we
incorporate both ab initio and experimental data to parametrize a potential for the dilute P–Fe
system.

We choose to write the potential in the form

U =
∑

i

Fi

[∑
j

φ(ri j )

]
+

∑
i j

V (ri j). (1)

For Fi [x] = √
x this is the second-moment tight binding form of Cyrot [7] and Finnis

and Sinclair [8]. This is transferable between environments where the local band structure is
primarily changed by scaling [9]. We will need to fit seven functions for the two-component
system: three pair potentials, VFeFe(r), VFeP(r) and VPP(r), three pairwise functions, φFeFe(r),
φFeP(r) and φPP(r), and two embedding energy functions, FFe and FP.

A previous parametrization in this form for general properties of iron [10] gave good
qualitative results but was not tailored specifically to defect properties. Recent ab initio
work [12, 13] shows that at high densities the resistance to compression arises from a many-
body effect (electronic kinetic energy) rather than a pairwise repulsion. Fitting compression
data using the short range part of V (ri j) typically leads to an overestimate of interstitial
formation energies and volumes [14]. These quantities have recently come into the realm
of what can be calculated by ab initio means, and can be used to fit short range repulsion in
regions where the density is close to its bulk value. We have shown that including different
things in the fit leads to very different potentials: to describe point defect interactions, one
must fit point defect properties and so we use an iron potential optimized for point defects
as the basis of the present work [13]. This incorporates the kinetic energy effect by writing
F(x) = −√

x + a2x2 + a4x4, with increasing x taking us smoothly between hopping and
free-electron dominated regimes. Hence isotropic compression is dealt with by the many-
body term (high x), while short atom–atom distances can be addressed with the pair potential
V (ri j). This modest change to the second-moment formalism gives greater fitting flexibility
and no additional computing cost, since F is implemented via a look-up table.

Pure P is covalently bonded and cannot be described by this type of potential. We
therefore do not attempt to fit properties of pure phosphorus, or phosphorus-rich compounds,
concentrating instead on point defects in α-iron, their interactions with phosphorus atoms and
fictitious iron-rich compounds. To parametrize the potential we use data generated from ab
initio plane wave pseudopotential calculations using density functional theory [16], ultrasoft
pseudopotentials [17], the spin-dependent generalized gradient approximation for exchange
and correlation [18] and periodic boundary conditions. Calculations on pure iron [19] suggest
that this is a reliable approach; it has been deployed widely and the calculations can be routinely
done using standardized software5.

There is an additional caveat for ferromagnetic materials: the magnetism (and hence Fermi
level) is affected by defects and this leads to a much slower convergence of the energy with
system size (and k-point sampling) than is typically observed for non-magnetic elements [20].
This may be due to the fact that the Fermi energy moves relative to the spin bands in the
supercell calculation, whereas for a truly infinite crystal the bands are fixed. Despite this

5 Codes PWSCF (www.pwscf.org) and VASP (cms.mpi.univie.ac.at/vasp).

www.pwscf.org
cms.mpi.univie.ac.at/vasp
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Table 1. Energies of relaxed iron-rich crystal structures (‘stripe’ is a layer bcc structure with
Fe–Fe–Fe–P (001) layers), single-substitutional-impurity (SSI) phosphorus atoms, near neighbour
double-substitutional impurity (DSI) and an (001) monolayer of P in seven layers of Fe (labelled
Fe7P) both under strain and after fracture at the P (Fe7P), one layer above the P (Fe6PFe) and
in pure iron (Fe8). Stresses are parallel and perpendicular to the long (z) axis respectively. The
quoted energies are relative to a spin-zero GGA representation of an iron atom. Absolute values
are not used in the fitting, only differences between them for which this arbitrary zero cancels out.

Formula Structure Energy (eV) Mag. mom. Volume (Å3) Pressure (kbar)

Fe2 bcc 16.617 4.62 23.24 0
Fe3P L12 30.755 7.85 47.59 0
Fe3P DO3 30.971 5.46 43.55 0
Fe3P Stripe 30.786 5.52 44.69 0
Fe6P3 Fe2P 69.718 9.13 101.34 0

Fe15P SSI 130.867 35.30 185.9 1.34
Fe53P SSI 446.714 125.26 630.4 0
Fe14P2 DSI 128.407 32.71 185.9 6.67

Formula Strain, εzz Energy (eV) Mag. mom. Volume (Å3) Stresses

Fe7P −0.025 63.997 14.6 88.24 65, 82
Fe7P 0.0 64.066 14.8 90.51 25, 10
Fe7P 0.025 64.042 15.0 92.77 −13, −51
Fe7P 0.050 63.941 15.2 95.03 −45, −98
Fe7P 0.075 63.789 15.6 97.30 −70, −130
Fe7P 0.5 61.073 10.9 135.76 −26, 0
Fe6PFe 0.5 60.988 6.9 135.76 −24, 0
Fe8 0.5 64.141 21.0 135.76 −6, 0

slow convergence of defect energy, the energy differences between e.g. different interstitial
configurations converge much more rapidly [19]. Thus we are justified in fitting energy
differences from calculations using relatively small unit cells, while obtaining the absolute
formation energy from larger calculations.

Ferromagnetism also means that the band structure changes dramatically at the fcc–bcc
phase transition iron. For this reason [9] we do not expect the potential to describe paramagnetic
iron correctly: high T fcc–bcc transitions have been observed with other iron potentials but
the driving force is vibrational (entropic) not magnetic [15].

2. Methods

The fitting strategy assumes that phosphorus interacts with point defects via short ranged,
pairwise interactions and long range strain fields. Thus we include configurations representing
point defects, single-substitutional-impurity (SSI) phosphorus atoms and combinations thereof.
Since the major problem associated with phosphorus is segregation to grain boundaries, we
include Fe with a 2D layer of P in our fitting database. By fitting relaxation volumes, we
capture long range strain effects. We also include liquid configurations to ensure that the
functions are sampled at all separations [29].

The ab initio calculations and configurations included in the fitting are given in
tables 1–3. Our ab initio calculations use small unit cells, which introduces problems of
images and relaxation [4] for considering isolated defects. However, by fitting the same small
cells described by the potential, we alleviate this problem.

The most crucial aspect for radiation damage is the geometry of the defects and barriers
(which governs diffusion mechanisms) and the energy differences between them (which
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Table 2. Calculated results for interstitial formation energies, relative to GGA free atoms/pure
iron and SSI phosphorus. Fe17 denotes iron interstitials, Fe16P denotes mixed dumb-bells or P
interstitials, Fe15P2 denotes P–P dumb-bells. TET and OCT denote tetrahedral and octahedral
sites respectively; other structures are dumb-bell configurations. In each case the volume is
constrained to the 16-atom pure iron cell, a 9×9×9 k-point grid was used and all atomic positions
relaxed. The mixed dumb-bells have low symmetry and may relax to a higher symmetry state: the
[001] mixed dumb-bell relaxes to the octahedral position and the [111] mixed dumb-bell goes to
the crowdion position. These calculations are for small supercells incorporating both interstitial
formation energy and strain interactions—they should not be regarded as energies of isolated defects
(they are probably upper bounds). Cohesive energies are quoted firstly relative to non-magnetic
free atoms with GGA secondly relative to solid Fe and substitutional Fe15P. Comparison with
results for larger supercells [19] suggests that full relaxation in a large supercell would lower the
formation energies systematically by about 1 eV. Elastic correction for finite size [27] of P2V/2B
suggested that full relaxation in a large supercell would lower the formation energies systematically
by about 1.5 eV.

Energy Strain Mag. Volume Pressure
Formula Structure (eV) adjusted mom. (Å3) (kbar)

Fe15P2 111 132.470/4.636 2.91 33.8 185.9 218
Fe15P2 001 132.464/4.642 2.45 33.3 185.9 246
Fe15P2 011 133.419/3.687 1.88 34.1 185.9 223
Fe16P TET 134.828/4.347 2.85 32.8 185.9 203
Fe16P 001 134.428/4.747 2.45 35.8 185.9 252
Fe16P 011 135.353/3.822 2.39 32.7 185.9 198
Fe16P 111 134.820/4.355 2.53 35.7 185.9 224
Fe16P OCT 134.428/4.747 2.44 35.8 185.9 252
Fe17 TET 135.723/5.521 4.29 31.4 185.9 184
Fe17 011 136.419/4.825 2.36 34.2 185.9 201
Fe17 001 134.779/6.466 4.65 34.6 185.9 224
Fe17 111 135.746/5.498 4.03 34.9 185.9 201
Fe17 OCT 134.530/6.715 4.83 35.0 185.9 228

Table 3. Calculated results used to fit vacancy formation energies, relative to GGA free atoms/pure
iron and SSI phosphorus. Formulae give the number of atoms in the supercell, ‘divac’ represents
two vacancies at nearest and second-neighbour sites. ‘1st’ and ‘2nd’ represent the site of the P
relative to the vacancy, ‘bar’ represents the energy with the P midway along its migration path. In
15-atom cases, the unit cell and atomic positions are fully relaxed and a 9 × 9 × 9 k-point grid
used. These vacancy-rich configurations incorporate both vacancy formation energy and strain
interactions—they should not be regarded as energies of isolated defects. In particular, for the
second-neighbour cases we have a chain of second-neighbour vacancies. Comparison with results
for larger supercells [19] suggests that full relaxation in a large supercell would lower the energies
slightly, but maintain the differences between them.

Formula Structure Energy (eV) Mag. mom. Volume (Å3) Pressure (kbar)

Fe15 Vacancy 122.606/2.021 36.4 183.66 0
Fe14 Divac–1st 112.563/3.757 34.9 180.20 0
Fe14 Divac–2nd 112.838/3.481 35.5 179.10 0
Fe14P 1st 120.852/1.706 33.2 181.78 0
Fe14P 2nd 120.379/2.180 34.6 184.64 0
Fe14P Bar–111 120.504/2.055 33.7 184.14 0
Fe30P 1st 253.873/1.622 71.1 371.87 −15
Fe30P 2nd 253.775/1.719 72.3 371.87 −7
Fe30P Bar–100 252.006/3.489 70.8 371.87 −19
Fe30P Bar–111 253.525/1.970 71.1 371.87 −8

governs diffusion rates). ‘Geometry’ here includes the symmetry of the defects and their P
composition, but not detailed interatomic separations. Similarly important are the interaction
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strengths between phosphorus and point defects, which determine whether pinning of defects
occurs. Of secondary importance are the actual values of the formation energies: this affects
production rates in cascade simulations, but in a molecular dynamics run defects are very
unlikely to be generated thermally.

2.1. Ab initio calculations

Our ab initio calculations are done using standard codes (see footnote 5), implementing
the pseudopotential plane wave method using density functional theory [16], ultrasoft
pseudopotentials [17], the spin-dependent generalized gradient approximation for exchange
and correlation [18] and periodic boundary conditions. The plane wave cut-off of 300 eV has
been used throughout with k-point convergence to 0.01 eV, force convergence to 0.001 eV Å−1

and stress to 0.01 kbar.
Previous ab initio calculations on the iron–phosphorus system [21–24] using the similarly

reliable full-potential linearized augmented plane wave method have downplayed total energy
and concentrated on the role of increased electron density as indicating strengthening of the
bonds at the surface relative to the grain boundary. This qualitative picture is not specific to
FeP and follows from the tight binding formalism [7]. We observe similar increased electron
densities in our calculations of a single layer of P in Fe, but do not use them in fitting.

The actual energies calculated by DFT relative to the free atom are known to be unreliable.
Likewise, the Finnis–Sinclair formalism cannot be expected to be transferable to free atoms.
Thus we do not at any stage fit the ab initio energies directly; rather, we fit relative
energies between different configurations of the same number and type of atoms. We take
the experimental cohesive energy for α-iron (4.316 eV/atom), but the cohesive energy for
phosphorus is not fitted (and nor is the crystal structure of pure phosphorus). All fits are to
energy differences with phosphorus in various locations, with the single substitutional impurity
taken as the reference state.

2.1.1. Crystal structures (table 1). Several crystal structures were examined and used in
the fitting. At the Fe3P composition we looked at fictitious L12 (fcc equivalent), DO3 and
DO32 (bcc equivalents) and a bcc-based structure with every fourth (001) layer replaced by
phosphorus. DO3 was noticeably lower in energy.

We also calculated Fe2P, a complex structure which does exist experimentally, finding
excellent agreement a = 5.836 (experiment: 5.865), c = 3.436 (experiment: 3.456), u = 0.257
(experiment: 0.256), v = 0.591 (experiment: 0.594). This gives us confidence that the ab initio
calculations are reliable for the system. Results are given in table 1.

2.1.2. Monolayers and surfaces (table 1). To include fracture-relevant data, we evaluated
surface energies for pure Fe, Fe with a monolayer of P at the surface, and Fe with a monolayer
of P one layer below the surface (there is evidence that P-rich grain boundary fracture occurs
by breaking of Fe–Fe bonds adjacent to the boundary, rather than Fe–P bonds at the boundary).
The results show that phosphorus does not segregate into a monolayer, either in bulk or on
the surface, and that a free (001) surface with P on it has a higher energy than without (taking
substitutional phosphorus as the reference state). Assuming replacement of iron by P, the
segregation to grain boundaries must result from the different crystalline environment there
rather than an intrinsic tendency of P to form layers (by extension, some grain boundaries will
be more susceptible than others). Moreover, the fracture embrittlement probably arises from
a stress concentration effect rather than a simple Griffith-criterion energy balance. We note
however that some experimental evidence [25] suggests that P sits in hollow sites on Fe(001)—
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investigating all such possible reconstructions by ab initio calculation would be impractical,
hence the need for reliable potentials.

2.1.3. Substitutional impurities (table 1). Phosphorus has a small range of solid solubility
in Fe, and is believed to be located substitutionally. Several configurations were calculated: a
single P atom in a 16(54) (23(33) bcc) supercell and a pair of P atoms on neighbouring sites
in similar cells. In each case all ions were relaxed and we took the calculations to k-point
convergence (729/216 k-points). We compared the effects of fixing the lattice parameter at
the pure Fe value, or relaxing it to minimize energy (see table 2). The finite size effects going
from 16 to 54 atoms were only about 0.1 eV, within the fitting errors. In practice the Fe15P
SSI value is used as the P reference state.

The addition of P impurities causes a striking reduction of 10–15% in the stiffness of
iron. We calculate elastic constants by applying finite strains and measuring resultant stress.
Our calculations for pure iron give elastic constants of C11 = 225 GPa, C12 = 124 GPa,
C44 = 101 GPa, some 10% lower than experiment (and therefore not included in the fitting).
Calculations on the Fe15P substitutional impurity supercell (6.25% P) give C11 = 196 GPa,
C12 = 109 GPa, C44 = 91 GPa.

2.1.4. Vacancies (table 2). With a 31-atom Fe unit cell, we find a vacancy formation energy
of 1.94 eV compared to the fully converged value of 1.95 eV [19]. With 30 + 1 atoms, the
energy required to create a vacancy adjacent to a substitutional phosphorus is 1.64 eV for the
near neighbour site and 1.72 eV for the second-neighbour site.

For 15-atom supercells, the energies are 1.71 eV for the near neighbour site and 2.18 eV
for the second-neighbour site; this latter suggests a P–vacancy repulsion, but the cell is so
small that the calculation actually represents an alternating chain P–vacancy–P–vacancy, so
we neglect it.

We estimate the migration barrier by replacing two atoms in pure Fe with one located
at their mid-point6 and relaxing the remaining atoms while constraining the mirror plane
symmetry. As we shall see, in bcc this is not necessarily the barrier for a ( 1

2 , 1
2 , 1

2 ) hop but it
does represent a useful configuration to include in the fitting. The energy for P to hop from
the near neighbour site into the vacancy is much lower than for the direct second-neighbour
[001] hop: in the fitting we ensure that the latter barrier is high enough not to be surmountable
in MD.

2.1.5. Interstitials (table 2). In common with experimental [26] and previous work [19, 10]
we find the [011] Fe–Fe dumb-bell configuration to be the stable interstitial. Geometrically,
the migration mechanism for an [011] interstitial could go via the [111], tetrahedral, octahedral
or [001] configuration—our calculations suggest that the tetrahedral and [111] configurations
are similar in energy. Dynamically, it is also possible that a process of excitation to (111)
followed by fast 1D migration may be favoured [10].

Although we use smaller supercells without relaxation, the difference in energies from
larger calculations can be approximated by means of elasticity [27],and the differences between
various conformations (which is what we fit) are converged to within the accuracy with which
we can fit them. When one or two phosphorus atoms form part of the interstitial the energy
is lowered as compared with an iron interstitial and substitutional phosphorus, and the stable
configuration remains the [011] dumb-bell.

6 ( 1
4 , 1

4 , 1
4 ) is the symmetric mid-point; however, if no relaxation occurs the migrating atom makes its closest approach

to other neighbours at ( 1
6 , 1

6 , 1
6 ) and ( 1

3 , 1
3 , 1

3 ).
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Table 4. Energies and dilatations of defect configurations calculated using the interatomic
potential, with 2000-atom constant (zero-) pressure static relaxation. The notation is as for previous
tables. ‘Energy’ refers to a reference state with an equivalent number of iron atoms in pure iron
and phosphorus atoms as SSIs in iron. For unstable interstitial configurations we indicate the local
minimum. ‘Dilatation’ is defined relative to pure iron and calculated using constant volume and
elastic constants [35].

Structure Energy (eV) Dilatation (%)

Pure iron 4.013 0
Fe vacancy 1.71 −22.3
Fe divac-1st 3.285 −35.3
Fe divac-2nd 3.18 −48.9
Bar–Vacancy–Fe 2.34 —
Int 110 3.59 +124.7
Int OCT 4.22 +102.1
Int 100 Int oct
Int 111 Int 110

P SSI 0.0 −34.3
P–vac (1st) 1.34 −57.1
P–vac (2nd) 1.37 −58.1
Bar P–vac 1.65 —
P-110 2.57 +115.7
P-111 3.30 +102.7
P-100 Int 110
P-TET 2.80 +151.5
P-OCT 3.47 +161.5
Bar P-SSI-110 0.27 —

2.1.6. Liquid state calculations. We use a self-consistent process to model liquids, starting
with pair potentials [28] and MD to create a ‘typical’ atomic level model of liquid Fe–P alloy
(84 Fe atoms, 12 P). Then the total forces acting on each atom in this model are obtained from
static first-principles calculations. We then use dynamical refitting [11] via force matching [31]
to produce a new trial potential and generate a new ‘typical’ liquid configuration with classical
MD. The process is then iterated to self-consistency. Liquid configurations provide data
across the range of possible Fe–P separations, including small separations which are absent in
equilibrium crystal data at T = 0, and ensure there are no anomalous wiggles in the potential
at separations for which there are no data.

2.2. Fitting

In addition to the ab initio calculations above, other properties of pure iron fitted to experiment
are C11 = 1.517 eV Å−3, C12 = 0.861 eV Å−3, C44 = 0.761 eV Å−3, and the cohesive energy
of 4.316 eV.

We choose to parametrize the potential using a polynomial spline functional form. This
choice is arbitrary, but does not constrain the physical behaviour—we have shown [29] that a
liquid simulation using a cubic spline fit can be used to fit a reciprocal power series potential,
and the resulting V (r) and φ(r) are indistinguishable.

Thus

φ(ri j ) =
∑

k

Ak(Rk − r)3 H (Rk − r) (2)

F(x) = −√
x + a2x2 + a4x4. (3)
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For the extreme short range repulsion, which is sampled only by the primary knock-
on atom in a cascade simulation and not by any of our fitting data, we adopt the screened
electrostatic form of Biersack and Ziegler [30]:

V (r) =
∑

k

ak(r − rk)
nk H (rk − r)H (r − r2)

+ H (r2 − r)H (r − r1) exp(B0 + B1r + B2r2 + B3r3)

+ H (r1 − r)
Qi Q j

r
ξ(r/rs) (4)

where Qi and Q j are the nuclear charges and where rs = 0.468 3766/(Q2/3
i + Q2/3

j );

ξ(x) = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x + 0.028 17e−0.2016x. (5)

In these equations, H (x) is the Heaviside function and rB the Bohr radius. The Bi

coefficients are determined by continuity of the potential and its derivative, and so the
parameters available for fitting are Ak , ak and C .

We take VFeFe, φFeFe and FFe from our previous paper [13]. The φs are taken by scaling
the pure iron values. The implicit assumption is that in the rigid band picture, the tight binding
energy goes parabolically with number of valence d electrons: (10 − N)N . We assume that in
the dilute alloy the three phosphorus valence electrons are donated to an unchanged d band. This
suggests that the bond strength is e.g. �FeP/�FeFe = (3(10 − 3)/6(10 − 6))2 = 0.765 625 the
squaring coming from the assumption that the embedding function is a square root. Obviously,
this means that the potential is invalid for high phosphorus concentration.

To fit the remaining parameters, we use a weighted least squares fit to the lattice parameter
and formation energy for several Fe3P compounds (D03, L12, stripe), the relative energies
of defect structures (including the 〈100〉, 〈110〉 and 〈111〉 mixed interstitial configurations),
vacancy–substitutional interaction and vacancy migration energies from the first-principles
calculations.

In the weighting, prime importance was placed on those configurations expected to be seen
in simulation: the stable [110] interstitial, the substitutional phosphorus and the migration
barriers. While other configurations were less strongly weighted, we ensured that they
remained sufficiently high in energy that they would not subsequently participate spuriously
in dynamics.

For the defects, as with the liquid, the fitting process is a self-consistent one—we fit
to unrelaxed defect configurations to obtain a trial potential, relax the configuration using
this potential, then refit the potential to the new configuration. After several iterations, a self-
consistent set of defect and liquid configurations, energies and potential parameters is obtained.
This process means that the interatomic distances found in the ab initio are not fitted. Once a
fit had been obtained, the functions V (r) and φ(r) were tested ab oculo for overfitting and MD
simulations for thermal expansion, elastic moduli (figure 1), vacancy and interstitial migrations
and liquid state diffusion were done as a check for pathologies. Defect properties calculated
with the potential are given in table 4. The parameters for the final potential are given in table 5.

3. Phosphorus diffusion mechanisms

3.1. The interstitial mechanism of migration deduced ab initio

The models of P atom segregation proposed so far [32–34] are developed for the case when the
binding energy of a phosphorus–interstitial complex is small. Specifically, the mean free path
up to thermally activated dissociation is much shorter than the mean distance between sinks of
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Figure 1. The effect of 10% P on the Fe lattice parameter (squares) and bulk modulus (circles),
evaluated by molecular dynamics simulation on a 2000-atom Fe90P10 cell (grey (green) lines). For
comparison similar quantities for pure Fe (black (red) lines) are shown.

point defects. This condition is needed to justify the detailed balance approximation, required
for the concentration of P–interstitial complexes to be a function of the local concentration
of P atoms. Our ab initio calculations show that the binding energy of a Fe–P mixed dumb-
bell is not small, and hence this approximation is not valid. Indeed, the large binding energy
and small migration energy of an Fe–P interstitial complex implies that during the lifetime of
this complex the probability that it will dissociate thermally is small. For a typical value of
phosphorus concentration in RPV steels, ∼10−3, the mean free path of an irradiation produced
Fe–Fe dumb-bell before encountering a P atom is just a few nanometres. Hence, the majority
of interstitials arriving at a GB (or any other sink of point defects) will contain phosphorus
atoms. As a consequence, the phosphorus–interstitial complex should be treated as a single
migrating entity in methods such as kinetic Monte Carlo simulation.

3.2. Vacancy mechanism of migration

Our results also show significant vacancy–P atom interaction energy: the binding energy of
this complex is ∼0.3 eV. This was not expected previously and in the model by Lidiard [33]
this interaction was totally neglected. Even more importantly the interaction is long ranged, at
least up to the second-neighbour atoms, which invalidates the simple models [32] for diffusion
coefficients of Fe–P alloy. Their conclusion, that in bcc alloys solute atoms always drift up
the vacancy concentration gradient [32], must be re-examined allowing for longer ranged
interactions and complex formation. The long range vacancy–phosphorus interaction in bcc
iron makes it possible for a vacancy to move around the P atom, while remaining bound as
a complex. As a consequence the situation may become similar to that for fcc alloys, where
the diffusion coefficient of a solute atom can be positive (indicating drag of solute atoms) or
negative (simple exchange) depending on the relative frequencies of vacancy jumps between
two neighbour sites of the solute atom and away from the solute atom. Hence, it is possible
that vacancies would drag P atoms to sinks of point defects.

The small energy for the vacancy–P atom exchange jump (relative to that of vacancy iron
atom) implies that the diffusion coefficient of phosphorus atoms via a vacancy mechanism
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Table 5. The analytic form of the potentials. ξ is the short range screening function [30] described
in the text. As further work is done, we intend to continue the self-consistent fitting process to
improve the potential. Users are encouraged to contact the authors with results and an evolving
‘best’ set of parameters will be maintained online at http://homepages.ed.ac.uk/graeme

Potential Value (eV) Cut-offs (Å)

VFeFe(r) 9734.236 589 2908ξ(r, 26, 26)/r 0.0–1.0
+ exp(7.412 270 938 4068 − 0.641 806 907 133 67r 1.0–2.05
− 2.604 354 796 1722r2 + 0.626 253 939 3123r3)

− 27.444 805 994 228(2.2 − r)3 2.05–2.2
+ 15.738 054 058 489(2.3 − r)3 2.05–2.3
+ 2.207 711 873 3936(2.4 − r)3 2.05–2.4
− 2.498 979 905 3251(2.5 − r)3 2.05–2.5
+ 4.209 967 649 4795(2.6 − r)3 2.05–2.6
− 0.773 612 941 297 13(2.7 − r)3 2.05–2.7
+ 0.806 564 149 377 89(2.8 − r)3 2.05–2.8
− 2.319 435 892 4605(3.0 − r)3 2.05–3.0
+ 2.657 740 612 8280(3.3 − r)3 2.05–3.3
− 1.026 041 693 3564(3.7 − r)3 2.05–3.7
+ 0.350 186 158 919 57(4.2 − r)3 2.05–4.2
− 0.058 531 821 042 271(4.7 − r)3 2.05–4.7
− 0.003 045 882 455 6234(5.3 − r)3 2.05–5.3

VFeP(r) (5615.905 724 5908/r)ξ(r, 26, 15) 0.0–1.0
+ exp(10.761 854 424 88 − 10.004 045 788 895r 1.0–2.0
+ 4.985 425 447 2397r2 − 1.259 978 856 9372r3)

− 3.313 660 574 3629(5.3 − r)4 2.0–5.3
+ 12.625 238 193 60(5.3 − r)5 2.0–5.3
− 20.361 693 308 072(5.3 − r)6 2.0–5.3
+ 17.629 292 543 942(5.3 − r)7 2.0–5.3
− 8.812 072 804 7659(5.3 − r)8 2.0–5.3
+ 2.549 428 860 9989(5.3 − r)9 2.0–5.3
− 0.396 983 907 834 03(5.3 − r)10 2.0–5.3
+ 0.025 779 015 833 433(5.3 − r)11 2.0–5.3

VPP(r) (3239.945 610 3409/r)ξ(r, 15, 15) 0.0–0.9
+ exp(9.938 284 249 9617 − 8.563 716 427 2526r 0.9–2.5
+ 3.451 962 728 599r2 − 0.614 538 313 502 15r3)

− 0.078 293 794 709 143(5.3 − r)4 2.5–5.3
+ 0.037 557 214 911 646(5.3 − r)5 2.5–5.3

φFeFe(r) 11.686 859 407 970(2.4 − r)3 0.0–2.4
− 0.014 710 740 098 83(3.2 − r)3 0.0–3.2
+ 0.471 935 270 759 43(4.2 − r)3 0.0–4.2

φFeP(r) φFeFe(21/24)2 0.0–4.2
φPP(r) φFeFe(21/24)4 0.0–4.2

FFe(ρ) −√
ρ − 6.731 411 558 6063 × 10−4ρ2 + 7.651 490 560 4792 × 10−8ρ4

FPρ −√
ρ + 0.001 195 027 454 0243ρ2

would be independent of this energy. The potential shows that the barrier for jumps from first
to second neighbours is similar to barriers in pure Fe. Finally, the conclusion [33] that the
migration of phosphorus atoms to grain boundaries is predominantly via the interstitials has
to be verified in the view of strong long ranged interaction of vacancy–P atom complexes, and

http://homepages.ed.ac.uk/graeme
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Figure 2. Constrained static relaxations of P–vacancy complexes with P moved over various
barriers. Emxy gives the height of the barrier to P moving from the xth neighbour to the yth; Ebx

gives the binding energy of P at the xth-neighbour site. The final panel shows the barrier to vacancy
movement in pure iron. The barrier against motion of the vacancy–phosphorus complex is similar
to the binding energy, and much lower than the barrier in pure Fe. Consequently, the P traps the
vacancy, reducing overall vacancy diffusion.

rates of production of single interstitials smaller than those of single vacancies in high energy
displacement cascades in α-iron due to higher intra-cascade clustering of interstitial atoms.

3.3. The calculated mechanism of migration, using the potential

We have performed simulations of diffusion for point defects in FeP using the potential defined
in table 5. We find that vacancies diffuse freely in iron, but are attracted to and form complexes
with the P atoms. Although the phosphorus atom can move into the vacant site, in isolation
this would simply produce a thermally activated oscillation, and no net diffusion—the vacancy
has to hop out to second-neighbour sites and back again for comigration to occur. Using static
relaxation, we calculated the various barriers to vacancy jumps in the vicinity of a P atom
(figure 2). A near neighbour hop in bcc crosses two intermediate (111) planes, so the barriers
tend to be bimodal. Although the P–v migration barrier is only half that of the Fe–v barrier,
to obtain long range P migration the vacancy has to hop around the P via second neighbours.
Energetics (both ab initio and with the potential) show the P to be bound to the vacancy in
both first- and second-neighbour sites; however, from the second-neighbour site the barriers
are similar for hopping back or further away from the P. Thus P acts as a strong vacancy trap,
and comigration is likely.

We performed some preliminary MD simulations using the potential with 2000 atoms to
check the mechanism and ensure against pathological behaviour. For 1200 K, with a single
P interstitial, a series of 1D migration steps were observed for about 80 ps, after which the
interstitial dissociated from the P atom and standard 3D migration in pure Fe continued. At
920 and 600 K, however, the mixed interstitial did not separate and migration was more three
dimensional (figure 3). Interstitials diffuse freely in pure iron, and are strongly attracted to
substitutional P. The P–Fe mixed dumb-bell is also highly mobile, and the P diffuses rapidly.
Thus P diffusion occurs primarily via interstitials in radiation damage conditions where Fe–
Fe interstitials are commonplace. Under thermal conditions however, interstitial mediated
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Figure 3. Mean squared displacement (MSD) against time for migration in a unit cell containing 1 P
and 2000 Fe atoms, initially located in a mixed dumb-bell. Various temperatures were examined.
At 600 and 920 K the P remains attached to the interstitial throughout the period of the run. For
1200 K, we observed rapid 1D diffusion of the phosphorus atom via mixed interstitial (Fe does not
diffuse in this phase), followed by a dissociation event and standard interstitial diffusion in pure Fe.
The simulation box is large enough that the interstitial is not recaptured, and subsequent diffusion
is for the iron atoms.

segregation to boundaries will not occur since there is no source for interstitials in the bulk,
and mixed interstitials formed at sinks cannot transport further P atoms to the sink.

The stability of small complexes suggests, however, that still larger complexes may be
important. For example mixed interstitials may be pinned by other P atoms, forming sessile
PP interstitials. Future molecular dynamics simulation can incorporate features neglected by
this model, such as clustering, recombination, segregation and the specific defect distributions
associated with thermal, electron or neutron radiation.

4. Conclusions

We have developed an interatomic potential for the α-Fe–P system in the limit of low P
concentration with particular importance attached to configurations observed under radiation
damage. This potential gives a good description of point defect properties and conformations,
in particular vacancy and interstitial complexes with a P atom, and hence can be used in
larger scale molecular dynamics or Monte Carlo simulations to study diffusion properties and
segregation of P under both ageing and irradiation conditions. Pure phosphorus cannot be
described by this type of potential.
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The potential predicts that phosphorus is strongly bound to both vacancy and interstitial
defects, in accordance with ab initio results. This had not been expected previously, and
conclusions of theoretical studies that ignore strong P–defect binding should be re-examined.

We have presented preliminary molecular dynamics studies of P diffusion in iron which
show the potential to be free from pathologies, but a quantitative study of these processes
(which should include larger complexes) in beyond the scope of this paper. It appears that in
the temperature region of interest for RPV steels P would migrate rapidly via both interstitial
and vacancy complex mechanisms, although we have not studied large complexes which may
further complicate the process.

In summary, the detailed understanding of radiation damage in steels remains an area of
active interest more than thirty years after the pioneering work of Michael Norgett helped pose
the questions.
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